电脑哪里看超频内存(如何看内存是否超频)

1. 如何看内存是否超频

电脑超频

超频是使得各种各样的电脑部件运行在高于额定速度下的方法,不同于主频、分频,属于频率的一种分类。

不同于

主频、分频

属于

频率的一种分类

使得

各种各样的电脑部件运行

基本简介

电脑的超频就是通过计算机操作者的超频方式将CPU、显卡、内存等硬件的工作频率提高,让它们在高于其额定的频率状态下稳定工作,以提高电脑的工作速度。超频的英文名称是“Over Clock”,是一种通过调整硬件设置提高芯片的主频来获得超过额定频率性能的技术手段。 以AMD 羿龙II X4 955黑盒CPU为例,它的额定工作频率是3.2GHz(赫兹),其作为一款原生四核处理器,仅通过软件方式便稳超4GHz风冷极限频率,系统可以稳定运行,就完成了一次成功的超频。

超频原理

以超频最有效果的CPU为例,目前CPU的生产可以说是非常精密的,以至于生产厂家都无法控制每块CPU到底可以在什么样的频率下工作,厂家实际上就已经自己做了多次测试,将能工作在高频率下的CPU标记为高频率的,然后可以卖更高的价钱。但为了保证它的质量,这些标记都有一定的富余,也就是说,一块工作在2500MHZ的CPU,很有可能在3500MHZ下依然稳定工作,为了发掘这些潜在的富余部分,可以进行超频(我们一般超频都是超外频)。

此外,还可以借助一些手段来使CPU稳定工作在更高的频率上,这些手段主要是两点:增强散热效果、增加工作电压。对于电脑的其它配件,依然利用这样的原理进行超频,如显示卡、内存、甚至鼠标等等。

CPU超频

作为机器的核心CPU的频率当然是非常重要的,因为它能直接影响机器处理任务的性能。[1]

提升CPU倍频,此法目前测试适合AMD黑盒处理器、AMD FX系列处理器和英特尔处理器型号后缀为K的处理器。超倍频需要CPU支持修改倍频(一般情况下,CPU的倍频都是被锁住的),选购CPU的时候要十分注意。

提升外频可以带来系统性能的大幅度提升,例如早期的PIII处理器,一般都是100MHz外频,只有超到133MHz左右,在散热优良而还可以加电压的时候,甚至可到150MHz以上。但在这时,需要电脑的内存、显卡可以工作在如此之高的频率之下(外频的速度通常与前端总线、内存的速度紧密关联。因此当你提升了CPU外频之后,CPU、系统和内存的性能也同时提升了。)。因此相对来说,100MHz外频的PIII处理器,是超外频比较理想的CPU。此法跟提升CPU倍频的方法一起用,效果最好。当然,这需要主板支持外频的调节,有的主板支持逐兆调节,就是专门为了超外频而设计的。

内存超频

在一般情况下,CPU外频与内存外频是一致的,所以在提升CPU外频进行超频时,也必须相应提升内存外频使之与CPU同频工作,比如我们拥有一个平台,CPU为早期的Athlon XP 1800+、KT600主板、DDR266内存。Athlon XP 1800+默认外频为133MHz、默认倍频为11.5,主频为1.53G,由于Athlon XP 1800+倍频被锁定了,只能通过提升外频的方法超频,假如将Athlon XP 1800+外频提升到166MHz,此时CPU主频为166MHz×11.5≈1.9GHz。

由于我们将CPU外频提高到了166MHz,假如你使用的是DDR333以上规格内存,那么将内存频率设置为166MHz属于标准频率下工作,但这里使用的是DDR266内存,为了满足CPU超频需求,内存也必须由原来的DDR266(133MHz)超频到DDR333(166MHz)使用。

内存异步超频,在内存同步工作模式下,内存的运行速度与CPU外频相同。而内存异步则是指两者的工作频率可存在一定差异。该技术可令内存工作在高出或低于系统总线速度33MHz或3:4、4:5(内存:外频)的频率上,这样可以缓解超频时经常受限于内存的“瓶颈”。

内存频率提升了,所以内存功耗也随之增加,但在默认情况下,主板BIOS中内存电压参数是被设置为内存标准频率的数值,通常来说,为了确保内存超频的稳定性,我们需要增加内存电压,很多主板BIOS设置中都提供了内存电压调节功能,同时内存电压调节级别一般以0.05V或0.1V为档次逐渐调节,内存电压参数调节越细微,对超频越有帮助。

显卡超频

和CPU超频一样,显卡超频同样对于任何一个热衷追求3D性能玩家来说都有不小的诱惑。为了获得更佳图形性能,玩家们往往有两种选择:一、购买性能更为强劲的最新产品;二、超频自己的显卡以获得更高的性能。在国外发烧玩家中,超频已经不再是仅仅为了单纯的追求性能。随着在全球范围内大家公认的3DMark03/05/06测试软件出现,为评定各自性能高低有了比较公正的依据。世界各地玩家纷纷将自己超频后成绩公布在网上,供其它超频玩家挑战,使得超频活动逐渐演变为电脑玩家展示各自技术、互相竞技的舞台。因此,在显卡市场同质化严重的今天,价格已经不仅仅是用户挑选显卡产品时关注唯一因素,显卡的做工用料好坏以及超频能力亦被消费者(尤其是DIY玩家)所重视。很多显卡厂商针对用户这方面的需求,在出厂时就对显卡进行超频,凭借超高的默认频率大幅提升性能,这种高频显卡也得到了一部分用户的喜爱。不过更多的用户都喜欢购买一块低价格的“标准”显卡,然后自己动手丰衣足食,既能享受超频过程中的乐趣,又能获得免费的性能提升。

超频建议

虽然超频能获得让电脑获得更高的性能,但是终归是超负荷运行,或多或少都会造成电脑运行不稳定,频繁蓝屏卡死或出现卡顿现象。对某一步件进行超频后就会影响其它部件运行,也就是所谓的“牵一发而动全身”。所以建议如果只是暂时需要一个更高处理性能,我们可以适当地暂时地对硬件超频,长期对电脑超频,不但得不到良好的操作体验,反而容易损坏电脑,丢失重要数据。

2. 如何看内存是否超频成功

查看方法一:看验证频率。当验证频率高于属性界面的最大值时就是超频成功。

查看方法二:看cpu的温度,cpu温度过高超出正常值范围就是超频成功。

扩展内容:何为超频,就是指电脑cpu的实际工作频率超出了官方额定频率上限。

3. 怎么看内存是否超频

你这情况属于开机自检正常,但无法进入到操作系统,在进入操作系统的时候死机,这种情况只需复位启动并进入bios将cpu改回原来的频率即可。

系统启动过程中出现黑屏,如果确定排除软件导致的话,那多半是cpu和内存条导致的。所以

如果你现在计算机仍然在超频,可以先将cpu恢复原来的频率,来检测一下问题是不是由于超频引起的,如果问题没有解决,建议使用替换法来检测你的内存、cpu和主板是否存在问题。

确认其他设备正常连接后,如果故障依旧的话,说明该故障是由于cpu超频使用引起的。一般只要将cpu的频率恢复即可。如果是在bios进行软超频的话,可将主板上的cmos电池取下,清空bios设置,然后安上电池,进入bios中进行正确设即可。

问题依旧可打开主机机箱,找到主板上的外频与倍频跳线,(那是在主板上象针的东西还有个帽子在上面),就是跳线然后将跳线恢复即可。

这些都不管用那就检测cpu电压,若是cpu正常,请刷新bioss试试,最好专业地方去进行刷新。

4. 怎么查看内存超频

在确认内存颗粒未损坏的前提下,用小刀将内存的SPD芯片取下,就可以在BIOS随便设置内存频率了(当然要在内存颗粒的频率所能达到的前提下)。需要注意的是,这种修复方法虽然有效,但对硬件的操作有一定的危险性,所以要十分小心。

5. 如何看内存是否超频频率

一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。

在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍:

一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置

首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表:

Command Per Clock(CPC)

可选的设置:Auto,Enable(1T),Disable(2T)。

Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。

该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。

CAS Latency Control(tCL)

可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。

一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。

CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。

内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。

这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。

该参数对内存性能的影响最大,在保证系统稳定性的前提下,CAS值越低,则会导致更快的内存读写操作。CL值为2为会获得最佳的性能,而CL值为3可以提高系统的稳定性。注意,WinbondBH-5/6芯片可能无法设为3。

RAS# to CAS# Delay(tRCD)

可选的设置:Auto,0,1,2,3,4,5,6,7。

该值就是“3-4-4-8”内存时序参数中的第2个参数,即第1个4。RAS# to CAS# Delay(也被描述为:tRCD、RAS to CAS Delay、Active to CMD),表示"行寻址到列寻址延迟时间",数值越小,性能越好。对内存进行读、写或刷新操作时,需要在这两种脉冲信号之间插入延迟时钟周期。在JEDEC规范中,它是排在第二的参数,降低此延时,可以提高系统性能。建议该值设置为3或2,但如果该值设置太低,同样会导致系统不稳定。该值为4时,系统将处于最稳定的状态,而该值为5,则太保守。

如果你的内存的超频性能不佳,则可将此值设为内存的默认值或尝试提高tRCD值。

Min RAS# Active Timing(tRAS)

可选的设置:Auto,00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15。

该值就是该值就是“3-4-4-8”内存时序参数中的最后一个参数,即8。Min RAS# Active Time (也被描述为:tRAS、Active to Precharge Delay、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay、RAS Active Time),表示“内存行有效至预充电的最短周期”,调整这个参数需要结合具体情况而定,一般我们最好设在5-10之间。这个参数要根据实际情况而定,并不是说越大或越小就越好。

如果tRAS的周期太长,系统会因为无谓的等待而降低性能。降低tRAS周期,则会导致已被激活的行地址会更早的进入非激活状态。如果tRAS的周期太短,则可能因缺乏足够的时间而无法完成数据的突发传输,这样会引发丢失数据或损坏数据。该值一般设定为CAS latency + tRCD + 2个时钟周期。如果你的CAS latency的值为2,tRCD的值为3,则最佳的tRAS值应该设置为7个时钟周期。为提高系统性能,应尽可能降低tRAS的值,但如果发生内存错误或系统死机,则应该增大tRAS的值。

如果使用DFI的主板,则tRAS值建议使用00,或者5-10之间的值。

Row Precharge Timing(tRP)

可选的设置:Auto,0,1,2,3,4,5,6,7。

该值就是“3-4-4-8”内存时序参数中的第3个参数,即第2个4。Row Precharge Timing (也被描述为:tRP、RAS Precharge、Precharge to active),表示"内存行地址控制器预充电时间",预充电参数越小则内存读写速度就越快。

tRP用来设定在另一行能被激活之前,RAS需要的充电时间。tRP参数设置太长会导致所有的行激活延迟过长,设为2可以减少预充电时间,从而更快地激活下一行。然而,想要把tRP设为2对大多数内存都是个很高的要求,可能会造成行激活之前的数据丢失,不能顺利地完成读写操作。对于桌面计算机来说,推荐预充电参数的值设定为2个时钟周期,这是最佳的设置。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRP值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。

如果使用DFI的主板,则tRP值建议2-5之间的值。值为2将获取最高的性能,该值为4将在超频时获取最佳的稳定性,同样的而该值为5,则太保守。大部分内存都无法使用2的值,需要超频才可以达到该参数。

Row Cycle Time(tRC)

可选的设置:Auto,7-22,步幅值1。

Row Cycle Time(tRC、RC),表示“SDRAM行周期时间”,它是包括行单元预充电到激活在内的整个过程所需要的最小的时钟周期数。

其计算公式是:row cycle time (tRC) = minimum row active time(tRAS) + row precharge time(tRP)。因此,设置该参数之前,你应该明白你的tRAS值和tRP值是多少。如果tRC的时间过长,会因在完成整个时钟周期后激活新的地址而等待无谓的延时,而降低性能。然后一旦该值设置过小,在被激活的行单元被充分充电之前,新的周期就可以被初始化。

在这种情况下,仍会导致数据丢失和损坏。因此,最好根据tRC = tRAS + tRP进行设置,如果你的内存模块的tRAS值是7个时钟周期,而tRP的值为4个时钟周期,则理想的tRC的值应当设置为11个时钟周期。

Row Refresh Cycle Time(tRFC)

可选的设置:Auto,9-24,步幅值1。

Row Refresh Cycle Time(tRFC、RFC),表示“SDRAM行刷新周期时间”,它是行单元刷新所需要的时钟周期数。该值也表示向相同的bank中的另一个行单元两次发送刷新指令(即:REF指令)之间的时间间隔。tRFC值越小越好,它比tRC的值要稍高一些。

如果使用DFI的主板,通常tRFC的值不能达到9,而10为最佳设置,17-19是建议值。建议从17开始依次递减来测试该值。大多数稳定值为tRC加上2-4个时钟周期。

Row to Row Delay(RAS to RAS delay)(tRRD)

可选的设置:Auto, 0-7,每级以1的步幅递增。

Row to Row Delay,也被称为RAS to RAS delay (tRRD),表示"行单元到行单元的延时"。该值也表示向相同的bank中的同一个行单元两次发送激活指令(即:REF指令)之间的时间间隔。tRRD值越小越好。

延迟越低,表示下一个bank能更快地被激活,进行读写操作。然而,由于需要一定量的数据,太短的延迟会引起连续数据膨胀。于桌面计算机来说,推荐tRRD值设定为2个时钟周期,这是最佳的设置,此时的数据膨胀可以忽视。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRRD值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。

如果使用DFI的主板,则tRRD值为00是最佳性能参数,4时能达到最高的频率。通常2是最合适的值,00看上去很奇怪,但有人也能稳定运行在00-260MHz。

Write Recovery Time(tWR)

可选的设置:Auto,2,3。

Write Recovery Time (tWD),表示“写恢复延时”。该值说明在一个激活的bank中完成有效的写操作及预充电前,必须等待多少个时钟周期。这段必须的时钟周期用来确保在预充电发生前,写缓冲中的数据可以被写进内存单元中。同样的,过低的tWD虽然提高了系统性能,但可能导致数据还未被正确写入到内存单元中,就发生了预充电操作,会导致数据的丢失及损坏。

如果你使用的是DDR200和266的内存,建议将tWR值设为2;如果使用或DDR400,则将tWD值设为3。如果使用DFI的主板,则tWR值建议为2。

Write to Read Delay(tWTR)

可选的设置:Auto,1,2。

Write to Read Delay (tWTR),表示“读到写延时”。三星公司称其为“TCDLR (last data in to read command)”,即最后的数据进入读指令。它设定向DDR内存模块中的同一个单元中,在最后一次有效的写操作和下一次读操作之间必须等待的时钟周期。

tWTR值为2在高时钟频率的情况下,降低了读性能,但提高了系统稳定性。这种情况下,也使得内存芯片运行于高速度下。换句话说,增加tWTR值,可以让内容模块运行于比其默认速度更快的速度下。如果使用DDR266或DDR333,则将tWTR值设为1;如果使用DDR400,则也可试着将tWTR的值设为1,如果系统不稳定,则改为2。

Refresh Period(tREF)

可选的设置:Auto, 0032-4708,其步进值非固定。

Refresh Period (tREF),表示“刷新周期”。它指内存模块的刷新周期。

先请看不同的参数在相同的内存下所对应的刷新周期(单位:微秒,即:一百万分之一秒)。?号在这里表示该刷新周期尚无对应的准确数据。

1552= 100mhz  2064= 133mhz  2592= 166mhz  3120= 200mhz  ---------------------

3632= 100mhz  4128= 133mhz

4672= 166mhz

0064= 200mhz

---------------------

0776= 100mhz  1032= 133mhz  1296= 166mhz  1560= 200mhz

---------------------

1816= 100mhz  2064= 133mhz  2336= 166mhz  0032= 200mhz  ---------------------

0388= 100mhz(15.6us)

0516= 133mhz(15.6us)

0648= 166mhz(15.6us)

0780= 200mhz(15.6us)

---------------------

0908= 100mhz(7.8us)

1032= 133mhz(7.8us)

1168= 166mhz(7.8us)

0016= 200mhz(7.8us)

---------------------

1536= 100mhz(3.9us)

2048= 133mhz(3.9us)

2560= 166mhz(3.9us)

3072= 200mhz(3.9us)

---------------------

3684= 100mhz(1.95us)

4196= 133mhz(1.95us)

4708= 166mhz(1.95us)

0128= 200mhz(1.95us)

如果采用Auto选项,主板BIOS将会查询内存上的一个很小的、名为“SPD”(Serial Presence Detect )的芯片。SPD存储了内存条的各种相关工作参数等信息,系统会自动根据SPD中的数据中最保守的设置来确定内存的运行参数。如过要追求最优的性能,则需手动设置刷新周期的参数。一般说来,15.6us适用于基于128兆位内存芯片的内存(即单颗容量为16MB的内存),而7.8us适用于基于256兆位内存芯片的内存(即单颗容量为32MB的内存)。注意,如果tREF刷新周期设置不当,将会导致内存单元丢失其数据。

另外根据其他的资料显示,内存存储每一个bit,都需要定期的刷新来充电。不及时充电会导致数据的丢失。DRAM实际上就是电容器,最小的存储单位是bit。阵列中的每个bit都能被随机地访问。但如果不充电,数据只能保存很短的时间。因此我们必须每隔15.6us就刷新一行。每次刷新时数据就被重写一次。正是这个原因DRAM也被称为非永久性存储器。一般通过同步的RAS-only的刷新方法(行刷新),每行每行的依次刷新。早期的EDO内存每刷新一行耗费15.6us的时间。因此一个2Kb的内存每列的刷新时间为15.6?s x2048行=32ms。

6. 怎么查看内存有没有超频

会出错,内存超频后要保证稳定性 不然容易出现蓝屏、崩溃、无法启动等情况 如用AIDA64 memtsst进行稳定性测试,如果过不了就降低频率或者把延时调高点、电压调高点 一点一点测试,直到内存极限而又可以稳定运行 超频有风险

7. 怎么看内存可不可以超频

不知道具体的CPU型号,无法判断可以超频至多少。在这里介绍下通过BIOS超频发方法:

1.打开电脑,进入bios,在cpu选项中,一般会有支持外频超频的位置,就是一组数字,比如cpu默认外频是200MHZ,那么在此位置就会显示200,可以选择到此位置更改这个外频。将外频调大,那么cpu的频率就会增大,就达到了超频的目的。

2.要注意的是,超频外频的时候,要一点一点地超,第一次,可以先调节成205的外频,然后重启看系统是不是正常,如果正常,再回来,调到210,如果正常再调,如此一次次地上调外频,直到调节到某个数字时系统不能正常启动了,那就对其加电压,也要一点一点地加,否则有可能会烧毁。首先要加0.1V的电压,重启看能否正常重启,如不能重启则为超频极限了。

3.cpu的散热也是非常重要的,如果散热不好,不但超不高,还有可能会烧坏cpu。所以一定要配一个效果好的风扇,必要时可以用水冷来散热。

4.CPU超了外频之后,内存的频率当然也是跟着上去的.因此,很多时候超频不成功。

5.往往不是CPU体质的问题,而是内存的问题.超频的时候,只要锁定了PCI-E在100,那么显卡就不会跟着超了。如果在给CPU超频的时候,PCI-E没有锁住就会导致显卡烧掉了。

6.内存能超多少是看体质的.体质好的能超到1500,还有就是,如果内存是双通道的双条(非套装),那超频是很难超上去的.除非是套装或者就用一条内存单通道比较好超。

8. 怎样知道内存是否超频

方法/步骤分步阅读

1

/5

与处理器一样,内存也有一个属于自己的频率。而现在DDR内存的频率分为两类,一类是实际频率、一类是有效频率。由于DDR内存在一个时钟周期的信号中可以同时识别上升沿和下降沿,所以DDR内存的有效频率是实际频率的2倍,而我们市面上看到的DDR3-1333、DDR3-1600这样的型号指的都是有效频率,这也就能解释各种监控软件显示的内存频率与“实际”不符的原因了。

2

/5

内存和处理器是天生一对,在超频的时候会相互牵连。在早期的处理器中,处理器外频是与内存的频率保持一致的,也就是说随着处理器的外频的提高,内存频率也是随着1:1的增加,所以当时内存的好坏对于处理器的发挥至关重要。

3

/5

不同于处理器,不同厂商不同型号的内存会根据产品的定位以及自身的需求而选择不同的内存颗粒,而内存颗粒之间的体质差距还是相当大的。但是整体来说,我们买到的内存基本上都有频率往上调一个档次的能力,即1333可到1600、1600可到1866,当然,也有那些能够提升多个档次的内存条,我们一般称之为“神条”,而厂商也会在高端产品线中特意推出类似的超频内存,供玩家把玩。

4

/5

内存超频成功与否不仅要看内存颗粒是否能够承受高频率下的考验,另外时序的调整也很重要。如果我们把内存的读写看成一种流水线作业的话,时序就像是其中每一个环节所需时间的调整。懂得内存时序调节的高手,才能够真正发挥内存的最大性能

5

/5

与处理器超频一样,内存在超频的过程中也免不了电压的调整。按照标准规范,DDR3的电压应该保持在1.5v,不过随着内存颗粒的工艺以及品质的提高,越来越多的高端超频内存将默认电压设定在1.6v-1.65v,而在保证散热的情况下,这样的电压不会对内存造成伤害。笔者建议一般超频的情况下,1.7v以下的电压都是可以接受的范围。而不同的内存颗粒对于电压的敏感度也是不一样的,所以我们在超频的之前,可以查询一下自己使用的内存的品牌以及型号,以了解内存的最佳电压范围。

9. 怎么看内存能不能超频

内存条能不能超频,主要是看你这根内存条的体质怎么样,能不能超频那主要真的还是看运气的。

就跟CPU超频一样,有些CPU本身体质好,它可以超到很高的幅度。比如。很早期的赛扬300a,在我的记忆中,绝大多数都可以超到450,甚至有很少的可以超到504。可这种超神的CPU,也有人只超了一级,超频到333,就会出现蓝屏死机。

个人建议,内存条还是不要超频的好,何况你是想从2666超到2800,就算超频成功了,也不会带来任何性能提升。倒是反可能出现一些稳定性的问题。

10. 如何看内存是否超频了

。。XMP(ExtremeMemoryProfile缩写),是Intel在2007年提出的高频内存认证标准,用于DDR3和DDR4。支持该标准的内存条,SPD中写入一个超频设定参数,只要主板BIOS支持这个标准,启用X.M.P选项,内存就被自动超频到预设的频率。

11. 怎么看内存超频

查看方法一:看验证频率。当验证频率高于属性界面的最大值时就是超频成功。

查看方法二:看cpu的温度,cpu温度过高超出正常值范围就是超频成功。

扩展内容:何为超频,就是指电脑cpu的实际工作频率超出了官方额定频率上限。