电脑如何查看内存条(电脑如何查看内存条频率)

电脑如何查看内存条频率

1、使用官方“AMD RYZEN MASTER”软件进行超频

建议使用官方的“AMD RYZEN MASTER”专用软件进行超频,方法十分简单,我们选择一个配置文件,我们修改CPU频率和核心电压等,我们将核心频率改为3600(3.6),电压也要适当增加,建议核心频率一点一点的测试增加。

二:在主板BIOS设置超频

1、在电脑开机之后,反复按下DEL键,进入BIOS界面,将语言设置成“简体中文”,按键盘上F7键进入高级模式,切换至“Ai Tweaker”选项,我们的CPU主频默认是3.5Ghz,而内存频率默认只有2133。

2、关于内存超频方法,在AI超频调整,打开D.O.C.P模式,我们可以将内存频率进行调整了,如果你的内存是3200频率内存,那么我们设置为3200频率,甚至更高,具体可以超频多少频率就需要看你内存超频的潜质了。

关于CPU超频方法,例如我们的CPU默认主频是3.5GHz,即35,我们建议主频一次0.1上调,即36、37、38微调,调好之后按F10进行BIOS保存设置。


电脑查看内存条频率命令符是多少

寻星仪使用方法

1. 将寻星仪一侧标有“TO LNB”连接到天线高频头处,将另一侧标有“TO REC” 连接到接收机上,并将接收机和电视机打开。

2. 接收机打开后,由接收机供出来的电压为13-18V,检查寻星仪是否有灯亮,灯亮则表示寻星仪正在正常工作。

3. 在接收机里设置所要接收卫星的数据。(包括本振频率,下行频率,符码率,极化等) 并开到信号强度,信号质量光标状态。 二 寻星仪表盘操作:

1. 寻星仪配置螺旋衰减器,作用是衰减调节信号大小,接收机通电后,可操作螺旋衰减器将指针控制在刻度表5格上,寻星仪会发出微弱响声,此时,轻微摇动天线,靠近你要找的卫星,寻星仪发现有卫星信号输入时,响声会增大,指针也会随之升到刻度表8-10格之间或更高,说明有卫星信号输入。此时结合接收机的信号质量光标,看是否是你要找的卫星。

2. 寻星仪不能识别使用者所要找的卫星信号,凡是有卫星信号输入时,寻星仪一律显示有信号。此时只能从卫星接收机输入要找卫星参数的信号质量光标上来确认。

3. Ku波段可以直接连接,C波段调星时需在寻星仪至高频头之间串入一个功分器或100米左右电缆线,以衰减信号,否则寻星仪会自激而导致表针不能降下来。

4. 在高大楼群之间或强干扰地带对星, 寻星仪也会自激啸叫而导致表针不能降下来。 三 如果寻星仪收到信号而数字机未能显示有信号时有以下几种情况 1. 不是使用者所要找的卫星信号。

2. 高频头极化. 焦距 摆放位置错误,需调整。

3. 信号微弱,通过衰件器又将指针调到4-5之间,重新对天线或高频头进行调整,使信号又重新增大。

4、 寻星仪的指针指在最大处,但是没有信号。

因为寻星仪所接收到的信号只是初步的判断天线方向是否有卫星存在,而不是将所需要的信号直接显示在寻星仪的表盘上,它只是寻找卫星信号的一种辅助设备。 5、在没有调节天线的情况下,指针总是在指在最大处。 检查天线的正面是否对着建筑物或是前方被遮挡,如果没有这些现象存在,说明此时的LNB增益过大,需将其输给寻星仪的信号衰减一部分。

寻星仪又叫寻星器,是一种用于卫星接收天线安装与调整的简便仪表,它可以作为调整天线方向、馈源位置和极化角等项目的指示器,使天线达到最佳的位置。寻星仪实质上也是一种微波信号电平显示放大器。

寻星仪装有声光显示(光用于夜间照明)及指针式强度显示,工作频率为 950 ~ 2 150M Hz,增益 11dB,电源电压为13~ 18V,适用于卫星电视接收机的水平与垂直输出。它具有定位准确、寻星快捷、灵敏度高、体积小、携带方便,价格便宜的优点,能够满足一般卫星天线安装人员的需要。


怎样查看电脑内存条频率

一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。

在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍:

一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置

首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表:

Command Per Clock(CPC)

可选的设置:Auto,Enable(1T),Disable(2T)。

Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。

该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。

CAS Latency Control(tCL)

可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。

一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。

CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。

内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。

这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。

该参数对内存性能的影响最大,在保证系统稳定性的前提下,CAS值越低,则会导致更快的内存读写操作。CL值为2为会获得最佳的性能,而CL值为3可以提高系统的稳定性。注意,WinbondBH-5/6芯片可能无法设为3。

RAS# to CAS# Delay(tRCD)

可选的设置:Auto,0,1,2,3,4,5,6,7。

该值就是“3-4-4-8”内存时序参数中的第2个参数,即第1个4。RAS# to CAS# Delay(也被描述为:tRCD、RAS to CAS Delay、Active to CMD),表示"行寻址到列寻址延迟时间",数值越小,性能越好。对内存进行读、写或刷新操作时,需要在这两种脉冲信号之间插入延迟时钟周期。在JEDEC规范中,它是排在第二的参数,降低此延时,可以提高系统性能。建议该值设置为3或2,但如果该值设置太低,同样会导致系统不稳定。该值为4时,系统将处于最稳定的状态,而该值为5,则太保守。

如果你的内存的超频性能不佳,则可将此值设为内存的默认值或尝试提高tRCD值。

Min RAS# Active Timing(tRAS)

可选的设置:Auto,00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15。

该值就是该值就是“3-4-4-8”内存时序参数中的最后一个参数,即8。Min RAS# Active Time (也被描述为:tRAS、Active to Precharge Delay、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay、RAS Active Time),表示“内存行有效至预充电的最短周期”,调整这个参数需要结合具体情况而定,一般我们最好设在5-10之间。这个参数要根据实际情况而定,并不是说越大或越小就越好。

如果tRAS的周期太长,系统会因为无谓的等待而降低性能。降低tRAS周期,则会导致已被激活的行地址会更早的进入非激活状态。如果tRAS的周期太短,则可能因缺乏足够的时间而无法完成数据的突发传输,这样会引发丢失数据或损坏数据。该值一般设定为CAS latency + tRCD + 2个时钟周期。如果你的CAS latency的值为2,tRCD的值为3,则最佳的tRAS值应该设置为7个时钟周期。为提高系统性能,应尽可能降低tRAS的值,但如果发生内存错误或系统死机,则应该增大tRAS的值。

如果使用DFI的主板,则tRAS值建议使用00,或者5-10之间的值。

Row Precharge Timing(tRP)

可选的设置:Auto,0,1,2,3,4,5,6,7。

该值就是“3-4-4-8”内存时序参数中的第3个参数,即第2个4。Row Precharge Timing (也被描述为:tRP、RAS Precharge、Precharge to active),表示"内存行地址控制器预充电时间",预充电参数越小则内存读写速度就越快。

tRP用来设定在另一行能被激活之前,RAS需要的充电时间。tRP参数设置太长会导致所有的行激活延迟过长,设为2可以减少预充电时间,从而更快地激活下一行。然而,想要把tRP设为2对大多数内存都是个很高的要求,可能会造成行激活之前的数据丢失,不能顺利地完成读写操作。对于桌面计算机来说,推荐预充电参数的值设定为2个时钟周期,这是最佳的设置。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRP值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。

如果使用DFI的主板,则tRP值建议2-5之间的值。值为2将获取最高的性能,该值为4将在超频时获取最佳的稳定性,同样的而该值为5,则太保守。大部分内存都无法使用2的值,需要超频才可以达到该参数。

Row Cycle Time(tRC)

可选的设置:Auto,7-22,步幅值1。

Row Cycle Time(tRC、RC),表示“SDRAM行周期时间”,它是包括行单元预充电到激活在内的整个过程所需要的最小的时钟周期数。

其计算公式是:row cycle time (tRC) = minimum row active time(tRAS) + row precharge time(tRP)。因此,设置该参数之前,你应该明白你的tRAS值和tRP值是多少。如果tRC的时间过长,会因在完成整个时钟周期后激活新的地址而等待无谓的延时,而降低性能。然后一旦该值设置过小,在被激活的行单元被充分充电之前,新的周期就可以被初始化。

在这种情况下,仍会导致数据丢失和损坏。因此,最好根据tRC = tRAS + tRP进行设置,如果你的内存模块的tRAS值是7个时钟周期,而tRP的值为4个时钟周期,则理想的tRC的值应当设置为11个时钟周期。

Row Refresh Cycle Time(tRFC)

可选的设置:Auto,9-24,步幅值1。

Row Refresh Cycle Time(tRFC、RFC),表示“SDRAM行刷新周期时间”,它是行单元刷新所需要的时钟周期数。该值也表示向相同的bank中的另一个行单元两次发送刷新指令(即:REF指令)之间的时间间隔。tRFC值越小越好,它比tRC的值要稍高一些。

如果使用DFI的主板,通常tRFC的值不能达到9,而10为最佳设置,17-19是建议值。建议从17开始依次递减来测试该值。大多数稳定值为tRC加上2-4个时钟周期。

Row to Row Delay(RAS to RAS delay)(tRRD)

可选的设置:Auto, 0-7,每级以1的步幅递增。

Row to Row Delay,也被称为RAS to RAS delay (tRRD),表示"行单元到行单元的延时"。该值也表示向相同的bank中的同一个行单元两次发送激活指令(即:REF指令)之间的时间间隔。tRRD值越小越好。

延迟越低,表示下一个bank能更快地被激活,进行读写操作。然而,由于需要一定量的数据,太短的延迟会引起连续数据膨胀。于桌面计算机来说,推荐tRRD值设定为2个时钟周期,这是最佳的设置,此时的数据膨胀可以忽视。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRRD值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。

如果使用DFI的主板,则tRRD值为00是最佳性能参数,4时能达到最高的频率。通常2是最合适的值,00看上去很奇怪,但有人也能稳定运行在00-260MHz。

Write Recovery Time(tWR)

可选的设置:Auto,2,3。

Write Recovery Time (tWD),表示“写恢复延时”。该值说明在一个激活的bank中完成有效的写操作及预充电前,必须等待多少个时钟周期。这段必须的时钟周期用来确保在预充电发生前,写缓冲中的数据可以被写进内存单元中。同样的,过低的tWD虽然提高了系统性能,但可能导致数据还未被正确写入到内存单元中,就发生了预充电操作,会导致数据的丢失及损坏。

如果你使用的是DDR200和266的内存,建议将tWR值设为2;如果使用或DDR400,则将tWD值设为3。如果使用DFI的主板,则tWR值建议为2。

Write to Read Delay(tWTR)

可选的设置:Auto,1,2。

Write to Read Delay (tWTR),表示“读到写延时”。三星公司称其为“TCDLR (last data in to read command)”,即最后的数据进入读指令。它设定向DDR内存模块中的同一个单元中,在最后一次有效的写操作和下一次读操作之间必须等待的时钟周期。

tWTR值为2在高时钟频率的情况下,降低了读性能,但提高了系统稳定性。这种情况下,也使得内存芯片运行于高速度下。换句话说,增加tWTR值,可以让内容模块运行于比其默认速度更快的速度下。如果使用DDR266或DDR333,则将tWTR值设为1;如果使用DDR400,则也可试着将tWTR的值设为1,如果系统不稳定,则改为2。

Refresh Period(tREF)

可选的设置:Auto, 0032-4708,其步进值非固定。

Refresh Period (tREF),表示“刷新周期”。它指内存模块的刷新周期。

先请看不同的参数在相同的内存下所对应的刷新周期(单位:微秒,即:一百万分之一秒)。?号在这里表示该刷新周期尚无对应的准确数据。

1552= 100mhz  2064= 133mhz  2592= 166mhz  3120= 200mhz  ---------------------

3632= 100mhz  4128= 133mhz

4672= 166mhz

0064= 200mhz

---------------------

0776= 100mhz  1032= 133mhz  1296= 166mhz  1560= 200mhz

---------------------

1816= 100mhz  2064= 133mhz  2336= 166mhz  0032= 200mhz  ---------------------

0388= 100mhz(15.6us)

0516= 133mhz(15.6us)

0648= 166mhz(15.6us)

0780= 200mhz(15.6us)

---------------------

0908= 100mhz(7.8us)

1032= 133mhz(7.8us)

1168= 166mhz(7.8us)

0016= 200mhz(7.8us)

---------------------

1536= 100mhz(3.9us)

2048= 133mhz(3.9us)

2560= 166mhz(3.9us)

3072= 200mhz(3.9us)

---------------------

3684= 100mhz(1.95us)

4196= 133mhz(1.95us)

4708= 166mhz(1.95us)

0128= 200mhz(1.95us)

如果采用Auto选项,主板BIOS将会查询内存上的一个很小的、名为“SPD”(Serial Presence Detect )的芯片。SPD存储了内存条的各种相关工作参数等信息,系统会自动根据SPD中的数据中最保守的设置来确定内存的运行参数。如过要追求最优的性能,则需手动设置刷新周期的参数。一般说来,15.6us适用于基于128兆位内存芯片的内存(即单颗容量为16MB的内存),而7.8us适用于基于256兆位内存芯片的内存(即单颗容量为32MB的内存)。注意,如果tREF刷新周期设置不当,将会导致内存单元丢失其数据。

另外根据其他的资料显示,内存存储每一个bit,都需要定期的刷新来充电。不及时充电会导致数据的丢失。DRAM实际上就是电容器,最小的存储单位是bit。阵列中的每个bit都能被随机地访问。但如果不充电,数据只能保存很短的时间。因此我们必须每隔15.6us就刷新一行。每次刷新时数据就被重写一次。正是这个原因DRAM也被称为非永久性存储器。一般通过同步的RAS-only的刷新方法(行刷新),每行每行的依次刷新。早期的EDO内存每刷新一行耗费15.6us的时间。因此一个2Kb的内存每列的刷新时间为15.6?s x2048行=32ms。


电脑怎么查看内存条频率

原因这情况属于开机自检正常,但无法进入到操作系统,在进入操作系统的时候死机,这种情况只需复位启动并进入bios将cpu改回原来的频率即可。

系统启动过程中出现黑屏,如果确定排除软件导致的话,那多半是cpu和内存条导致的。

如果你现在计算机仍然在超频,可以先将cpu恢复原来的频率,来检测一下问题是不是由于超频引起的,


如何在电脑上查看内存条频率

频率不一致

也是能用的,

电脑会自动降频使用,

降频到低内存条一致的频率使用。

如果不能用,请先抠下主板上的小电池,

等一会儿再扣上,

两个不同频率的内存条,就能同时使用了。

频率不一致很容易出现不兼容的,只能更换频率一致的内存条了,个人建议品牌也要一致


怎么在电脑查看内存条的频率

第一,可以选择看内存表面的标注,一般内存条在出厂的时候都是会标注上内存的容量和频率的,购买新内存或者是电脑的时候可以取出来看一下。只需要看下内存表面的铭牌标注即可。一些内存的频率标注在标签下面,可以撕开看一下。

第二,可以在开机的时候可以查看电脑的自检信息,电脑在重启或者是开机自检的时候可以显示各个硬件的详细信息,此时朋友们就可以看到内存的频率和容量等等。可以尝试在 电脑开机 检测到第二个画面的时候按pause键暂停,此时就可以查看到内存频率情况。  


电脑如何查看内存条频率高低

1、任务管理器是不可以查看到内存条的具体型号的,如果不借助第三方工具只能查看到一些基本信息,如内存大小等;

2、如果想查看具体内特条型号,一个就是直接打开电脑机箱或者笔记本后盖壳查看;

3、还有就是借助第三方工具如:CPU-Z这个软件,可以查看具体的CPU和内存的信息,包括电压,型号,总线频率,内存频率,容量,品牌等信息。


怎么在电脑上查看内存条频率

具体查看主板支持内存频率方法如下:

1、首先确认主板具体型号。

2、确定了主板型号后,则可以通过网上查阅资料/直接登录主板的官网,查看下主板参数即可知道主板支持内存频率。注:电脑能够支持多大容量与多高频率的内存,不仅由主板决定,还和处理器有关,只不过大多数主板和处理器都是必须兼容结合使用,主板设计的时候,大都会考虑CPU支持的最大频率,因此一般只看主板支持内存频率就可以。


电脑如何查看内存条频率信息

CPUZ看内存频率,以下两个步骤即可:

1/  首先打开桌面工具箱,选择“CPU工具”选项,再点击CPU-Z图标

2/  然后在CPU-Z中点击上方的“SPD”,新的界面中最大带宽显示的就是当前内存频率。

内存频率:内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的*高工作频率。内存主频是以MHz(兆赫)为单位来计量的。